Skip to main content

General Questions

Automagik Tools converts any REST API into AI-native MCP (Model Context Protocol) tools that can be used by Claude, Cursor, and other AI coding assistants.Key Features:
  • Convert OpenAPI specs to MCP tools
  • Zero code required
  • Works with any REST API
  • Supports multiple authentication methods
  • Compatible with all MCP clients
Use Cases:
  • Give AI access to your internal APIs
  • Integrate third-party services with AI
  • Build custom AI workflows
  • Automate API interactions
MCP is an open protocol that enables AI assistants to connect to external tools and data sources.Think of it like this:
  • AI assistants = Apps on your phone
  • MCP = USB-C port
  • MCP tools = USB-C accessories
  • Any AI can use any MCP tool (standardized interface)
Benefits:
  • Universal: Works with all MCP-compatible AI clients
  • Extensible: Add any API as a tool
  • Secure: Run locally, you control data
  • Open: No vendor lock-in
Learn more: MCP Documentation
Yes! Automagik Tools is completely free and open source.No costs:
  • No subscription fees
  • No API usage limits
  • No hidden charges
  • 100% free forever
Potential costs (separate):
  • Your API provider charges (if API requires payment)
  • AI assistant API costs (Claude, OpenAI, etc.)
  • Infrastructure costs (if self-hosting API)
But the tool itself is free!
All MCP-compatible AI clients, including:Official Support:
  • Claude Code (Desktop and CLI)
  • Cursor
  • VSCode + Cline extension
  • Roo Code
  • Zed
Community Support:
  • Continue.dev
  • Windsurf
  • Any client implementing MCP protocol
Coming Soon:
  • GitHub Copilot (when MCP support added)
  • JetBrains AI (when MCP support added)
If an AI client supports MCP, it works with Automagik Tools!
No! Automagik Tools is designed for zero-code usage.What you need:
  1. OpenAPI specification (swagger.json)
  2. Basic terminal/command line knowledge
  3. API credentials (if API requires authentication)
What you DON’T need:
  • Programming skills
  • API development knowledge
  • Server setup experience
Example workflow:
# 1. Get OpenAPI spec
curl https://api.example.com/openapi.json > spec.json

# 2. Run MCP server
uvx automagik-tools mcp --spec spec.json

# 3. Use in AI client (configured once)
# Ask AI: "List all users"
That’s it! The AI handles the rest.

Technical Questions

Automagik Tools analyzes your OpenAPI spec and generates MCP tools automatically.Conversion Process:
  1. Parse OpenAPI Spec
    • Reads endpoints, parameters, schemas
    • Validates structure
  2. Generate MCP Tools
    • Each API endpoint → One MCP tool
    • Parameters → Tool arguments
    • Authentication → Automatic handling
  3. Expose via MCP Protocol
    • Tools available to AI clients
    • AI can call tools like functions
    • Results returned to AI
Example:
// OpenAPI endpoint
GET /users/{id}

// Becomes MCP tool
get_user(user_id: string) → User object
AI can now say: “Get user with ID 123” and the tool executes automatically.
Supported:
  • OpenAPI 3.0.x ✅ (Recommended)
  • OpenAPI 3.1.x ✅ (Full support)
  • Swagger 2.0 ⚠️ (Via conversion)
Swagger 2.0 Support:
# Convert Swagger 2.0 to OpenAPI 3.0
npm install -g swagger2openapi
swagger2openapi swagger.json -o openapi.json

# Then use with Automagik Tools
uvx automagik-tools mcp --spec openapi.json
Not Supported:
  • OpenAPI 1.x (obsolete)
  • RAML
  • API Blueprint
  • GraphQL (different protocol)
Most modern APIs provide OpenAPI 3.0 specs.
Yes, but you’ll need to create the spec yourself.Options:1. Generate from API documentation:
  • Use tools like Postman to generate OpenAPI
  • Many API testing tools export OpenAPI
2. Create manually:
  • Minimal spec is easy to write
  • Start with basic endpoints
  • Add complexity as needed
3. Use AI to generate:
  • Give API documentation to Claude/GPT
  • Ask: “Generate OpenAPI spec for this API”
  • Review and validate output
Example minimal spec:
{
  "openapi": "3.0.0",
  "info": {"title": "My API", "version": "1.0.0"},
  "servers": [{"url": "https://api.example.com"}],
  "paths": {
    "/users": {
      "get": {
        "operationId": "getUsers",
        "responses": {
          "200": {"description": "Success"}
        }
      }
    }
  }
}
See Creating OpenAPI Specs for guide.
Securely via environment variables.Process:
  1. Define in OpenAPI spec:
{
  "components": {
    "securitySchemes": {
      "apiKey": {
        "type": "apiKey",
        "in": "header",
        "name": "X-API-Key"
      }
    }
  }
}
  1. Set environment variable:
export API_KEY=your-secret-key-here
  1. Configure in MCP:
{
  "env": {
    "API_KEY": "your-key-here"
  }
}
Security Notes:
  • Credentials never stored in code
  • Only you have access
  • Runs locally on your machine
  • Not sent to AI providers (unless API is called)
Supported auth types:
  • API Keys
  • Bearer tokens
  • Basic authentication
  • Custom headers
Two ways to run MCP server:stdio Mode (Default):
uvx automagik-tools mcp --spec spec.json
# Uses standard input/output
Best for:
  • Local AI clients (Claude Code, Cursor)
  • Single user
  • Maximum compatibility
  • No network setup
How it works:
  • AI client spawns MCP server process
  • Communication via stdin/stdout
  • Server exists only during session

SSE Mode (Server-Sent Events):
uvx automagik-tools mcp --spec spec.json --sse --port 8000
# Runs as HTTP server
Best for:
  • Remote AI clients
  • Multiple users
  • Web-based AI tools
  • Persistent server
How it works:
  • Server runs independently
  • Clients connect via HTTP
  • Multiple clients can share server
When to use each:
  • Local use → stdio
  • Remote use → SSE
  • Not sure → stdio (simpler)

Usage Questions

1

Install

# Install uv (if not installed)
curl -LsSf https://astral.sh/uv/install.sh | sh

# Verify installation
uvx --version
2

Get OpenAPI Spec

# Download from API
curl https://api.example.com/openapi.json > spec.json

# Or use Swagger UI endpoint
curl https://api.example.com/swagger/v1/swagger.json > spec.json

# Verify spec is valid
uvx automagik-tools validate --spec spec.json
3

Configure MCP Client

Claude Code (~/.claude/mcp.json):
{
  "mcpServers": {
    "my-api": {
      "command": "uvx",
      "args": ["automagik-tools", "mcp", "--spec", "/path/to/spec.json"],
      "env": {
        "API_KEY": "your-key-here"
      }
    }
  }
}
Reload MCP servers in Claude Code
4

Use in AI

Ask Claude: "What tools are available?"
See your API tools listed
Ask: "Get user with ID 123"
Tool executes automatically!
Quick conversion guide:If you have OpenAPI spec:
# Already have spec.json
uvx automagik-tools mcp --spec spec.json
If you don’t have OpenAPI spec:Option 1: Generate from Postman
  1. Import API to Postman
  2. File → Export → OpenAPI 3.0
  3. Save as spec.json
Option 2: Use API documentation
  • Give docs to AI assistant
  • Ask: “Generate OpenAPI spec from this documentation”
  • Save output as spec.json
  • Validate with: uvx automagik-tools validate --spec spec.json
Option 3: Write minimal spec
{
  "openapi": "3.0.0",
  "info": {"title": "API", "version": "1.0.0"},
  "servers": [{"url": "https://api.example.com"}],
  "paths": {
    "/endpoint": {
      "get": {
        "operationId": "getEndpoint",
        "responses": {"200": {"description": "OK"}}
      }
    }
  }
}
See Converting APIs for detailed guide.
Yes! Configure multiple MCP servers.
{
  "mcpServers": {
    "github-api": {
      "command": "uvx",
      "args": ["automagik-tools", "mcp", "--spec", "/path/to/github-spec.json"],
      "env": {"GITHUB_TOKEN": "ghp_..."}
    },
    "stripe-api": {
      "command": "uvx",
      "args": ["automagik-tools", "mcp", "--spec", "/path/to/stripe-spec.json"],
      "env": {"STRIPE_KEY": "sk_test_..."}
    },
    "internal-api": {
      "command": "uvx",
      "args": ["automagik-tools", "mcp", "--spec", "/path/to/internal-spec.json"],
      "env": {"API_KEY": "internal-key"}
    }
  }
}
AI can now use all APIs:
"Create a GitHub issue, then send Stripe invoice, and log to internal API"
All three APIs work together seamlessly!
Simple: Update the OpenAPI spec
1

Get Updated Spec

# Download new spec
curl https://api.example.com/openapi.json > spec.json

# Or update manually if you maintain spec
2

Validate Changes

# Validate new spec
uvx automagik-tools validate --spec spec.json

# Check for breaking changes
diff old-spec.json spec.json
3

Restart MCP Server

stdio mode:
  • AI client auto-restarts on next use
SSE mode:
# Stop old server (Ctrl+C)
# Start with new spec
uvx automagik-tools mcp --spec spec.json --sse --port 8000
4

Reload in AI Client

Claude Code:
Cmd+Shift+P → "Reload MCP Servers"
Cursor:
Cmd+R (Reload window)
Tools now reflect updated API!
Yes, via OpenAPI spec modifications.Tool Naming:
{
  "paths": {
    "/users": {
      "get": {
        "operationId": "listAllActiveUsers",  // Tool name
        "summary": "Get all active users in the system",  // Tool description
        "description": "Returns paginated list of users with status='active'"
      }
    }
  }
}
Parameter Descriptions:
{
  "parameters": [{
    "name": "limit",
    "in": "query",
    "description": "Maximum number of results (1-100)",
    "schema": {
      "type": "integer",
      "minimum": 1,
      "maximum": 100,
      "default": 20
    }
  }]
}
AI sees:
  • Tool: listAllActiveUsers
  • Description: “Get all active users in the system”
  • Parameter: limit - “Maximum number of results (1-100)”
Better names = AI uses tools more effectively!

Integration Questions

Yes, if they support MCP protocol.Compatible local LLMs:
  • LM Studio (with MCP support)
  • Ollama (via MCP bridge)
  • LocalAI (MCP compatible)
  • Any model with MCP integration
Setup:
# Run MCP server
uvx automagik-tools mcp --spec spec.json

# Configure in your local LLM
# (Configuration varies by LLM)

# Example for LM Studio:
# Settings → Tools → Add MCP Server
# Command: uvx automagik-tools mcp --spec spec.json
Benefits:
  • Full privacy (everything local)
  • No API costs
  • Offline capable
  • Your data never leaves machine
Automagik Tools works alongside your existing setup.Common Integration Patterns:1. CI/CD Pipelines:
# Use in GitHub Actions
- name: Generate API tools
  run: |
    uvx automagik-tools mcp --spec openapi.json
2. Development Workflows:
# Add to package.json scripts
{
  "scripts": {
    "mcp": "uvx automagik-tools mcp --spec openapi.json"
  }
}
3. Docker Containers:
FROM python:3.11
RUN pip install uv
COPY openapi.json /app/
CMD ["uvx", "automagik-tools", "mcp", "--spec", "/app/openapi.json", "--sse"]
4. Internal Tools:
  • Point to internal API specs
  • Use private network endpoints
  • Secure with VPN/firewall
Currently: Basic logging onlyAvailable:
# Enable debug logging
uvx automagik-tools mcp --spec spec.json --debug

# Shows:
# - Tool calls
# - Parameters passed
# - API responses
# - Errors
Coming Soon:
  • Usage analytics
  • Performance metrics
  • Error tracking
  • Cost monitoring
Workaround for now:
  • Use API provider’s dashboard
  • Monitor network traffic
  • Log at application level
Share OpenAPI spec + MCP configurationMethod 1: Git Repository
# Project structure
project/
├── openapi.json          # API spec
├── mcp-config.json       # MCP configuration
└── README.md             # Setup instructions

# Team members clone and configure
git clone repo
# Follow README to set up MCP
Method 2: Shared Configuration
// Shared mcp.json template
{
  "mcpServers": {
    "team-api": {
      "command": "uvx",
      "args": ["automagik-tools", "mcp", "--spec", "${PROJECT_ROOT}/openapi.json"],
      "env": {
        "API_KEY": "${YOUR_API_KEY_HERE}"  // Each person sets their own
      }
    }
  }
}
Method 3: Internal Documentation
  • Document setup process
  • Provide example specs
  • Share best practices
  • Create team templates
Method 4: SSE Server (Advanced)
# Run shared MCP server
uvx automagik-tools mcp --spec spec.json --sse --port 8000 --host 0.0.0.0

# Team connects to: http://internal-server:8000
# Everyone uses same tools
Yes for most use cases, with considerations:Production-Ready For:
  • Internal tools and APIs
  • Development automation
  • Personal productivity
  • Small team usage
  • Prototype/MVP development
Consider For Production:Pros:
  • Stable core functionality
  • Open source (can review code)
  • Active development
  • MCP is standardized protocol
⚠️ Considerations:
  • Rate limiting (implement at API level)
  • Error handling (monitor and log)
  • Security (use proper authentication)
  • Scalability (use SSE for multiple users)
  • Updates (test before deploying)
Production Checklist:
  • API has rate limits
  • Authentication secured
  • Error handling tested
  • Monitoring in place
  • Backup OpenAPI specs
  • Documentation for team
  • Rollback plan ready
Large Scale?
  • Consider dedicated infrastructure
  • Implement caching
  • Load balancing for SSE
  • API gateway for access control

Troubleshooting Questions

Check these in order:
  1. Verify MCP config is correct:
cat ~/.claude/mcp.json
# Check for syntax errors
python -m json.tool < ~/.claude/mcp.json
  1. Test spec is valid:
uvx automagik-tools validate --spec spec.json
  1. Verify server starts:
uvx automagik-tools mcp --spec spec.json
# Should output: "MCP server running in stdio mode"
  1. Check AI client logs:
  • Claude Code: ~/.claude/logs/
  • Cursor: Help → Show Logs → MCP
  1. Reload MCP servers:
  • Claude Code: Cmd+Shift+P → “Reload MCP Servers”
  • Cursor: Cmd+R
Still not working? See MCP Connection Errors
Check authentication setup:
  1. Verify credentials are set:
echo $API_KEY
# Should output your key, not empty
  1. Check OpenAPI security scheme:
{
  "components": {
    "securitySchemes": {
      "apiKey": {
        "type": "apiKey",
        "in": "header",         // or "query"
        "name": "X-API-Key"     // Correct header name?
      }
    }
  },
  "security": [{
    "apiKey": []  // Applied globally
  }]
}
  1. Set in MCP config:
{
  "env": {
    "API_KEY": "your-actual-key"  // Use real key, not placeholder
  }
}
  1. Test API directly:
curl -H "X-API-Key: $API_KEY" https://api.example.com/endpoint
# Should succeed
See Authentication Guide for details.
Enable debug mode:
# Run with debug logging
uvx automagik-tools mcp --spec spec.json --debug

# Shows detailed information:
# - Tool calls with parameters
# - HTTP requests/responses
# - Error stack traces
# - Timing information
Check AI client logs:
# Claude Code
tail -f ~/.claude/logs/mcp-your-tool.log

# Cursor
# Help → Show Logs → MCP Logs
Test tool directly:
# Call API endpoint manually
curl -X POST https://api.example.com/endpoint \
  -H "Content-Type: application/json" \
  -H "X-API-Key: $API_KEY" \
  -d '{"param": "value"}'

# Verify API works outside of MCP
Common issues:
  • Wrong parameter types
  • Missing required parameters
  • Invalid authentication
  • API rate limiting
  • Network connectivity
See Common Issues for more.
Validate and fix:
  1. Check with validator:
uvx automagik-tools validate --spec spec.json
# Shows specific errors
  1. Use online validator:
  1. Common issues:
  • Missing required fields (openapi, info, paths)
  • Invalid schema references
  • Wrong data types
  • Syntax errors (JSON/YAML)
  1. Fix incrementally:
  • Start with minimal valid spec
  • Add endpoints one by one
  • Validate after each change
  • Identify what breaks
See OpenAPI Conversion Errors for detailed fixes.

Getting Help


Still have questions? Ask in Discord or open a GitHub Issue!